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Abstract: - The paper presents a design methodology based on model predictive control (MPC) to assure 
deadbeat performance of both current and speed loops in vector-controlled induction motor drives. Two 
controllers are independently designed for both loops where the controller parameters are adapted to cope with 
load changes over a wide range of operation. The performance is compared to that of PI controllers designed 
based on particle swarm optimization (PSO) and adaptive neuro-fuzzy inference systems (ANFIS). The 
comparison study shows superior performance of the MPC design. 
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1 Introduction 

Model predictive control (MPC) is an 
advanced method of process control that has been 
used in industry for chemical plants and oil 
refineries since the 1980’s. In recent years it has 
also been used in power system balancing models 
[1]. Model predictive controllers rely on dynamic 
models of the process, most often 
linear empirical models obtained by system 
identification. In other words, MPC systems rely on 
the idea of obtaining control values for process 
inputs by solving an optimization problem online. 
The problem is usually formulated with the help of a 
process model and continuous measurements 
[2].The main advantage of MPC is the fact that it 
allows the current timeslot to be optimized, while 
keeping future time slots in account. A finite time-
horizon is optimized, whereas the current time slot 
only is implemented. MPC has the ability to 
anticipate future events and can carry out control 
actions accordingly taking full advantage of the 
power available in today’s computer hardware in an 
automatic control context [3]. 

In its basic form, MPC is closely related to 
linear quadratic optimal control; however, MPC can 
be applied to linear time varying (LTV) systems. In 
[4], both uncertain time-varying parameter and 
bounded additive disturbance are explicitly taken 
into account in the MPC formulation. Robust 
stability and constraint satisfaction are guaranteed 

by computing a positively invariant set containing 
the measured state at each sampling instant. A 
decentralized hierarchical MPC approach is 
proposed in [5] for a LTV system to prove its ability 
in navigation under obstacle avoidance 
conditions.MPC has shown high competency in a 
variety of fields; it is a well-established industrial 
standard for controlling constrained multivariable 
processes. Two nonlinear model predictive control 
methods are implemented and compared in [6] on a 
laboratory three tank system. In [7], two different 
chemical processes are simulated in HYSYS 
software and a complete procedure for applying 
MPC control is carried out for each one including 
system identification, controller design, and 
parameter tuning. 

Moreover, MPC is applied in power system 
load frequency control for the enhancement of 
power system dynamic performance subject to 
several disturbances; the system is evaluated in [8]. 
The effectiveness of the proposed controller is 
validated upon a comparison with a fuzzy logic 
controller. In [9], another MPC-based load 
frequency controller of a multi-area power system in 
the presence of wind turbines is introduced. In such 
a system, each local area controller is designed 
independently so that stability of the overall closed 
loop system is guaranteed. On the other hand, MPC 
has been employed in many applications of 
electrical drive systems, including but not limited to, 
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speed control of DC motors [10], position control of 
DC servomotors [11], torque ripple reduction of 
brushless DC motors [12], speed and direct torque 
control of permanent magnet synchronous motors 
(PMSM) [13, 14], and torque control of induction 
motors [15, 16]. Recently, renewable energy sources 
have been also controlled by implementing MPC. 
The energy required for air conditioning as well as 
basic living appliances can be predicted and 
minimized using MPC [17]. MPC is also applied to 
grid-tied photovoltaic storage system yielding 
satisfactory real-time dynamic response [18]. 
Advantages of MPC in such a case include smoother 
power output while respecting and maintaining the 
functional requirements of the storage units and 
power converters. 

Fuzzy logic control and artificial neural 
networks are combined with MPC to enhance its 
performance. A neural network controller is applied 
to the optimal MPC of constrained nonlinear 
systems by minimizing a control-relevant cost 
function [19]. In [20], a fuzzy MPC approach is 
introduced to design a control system for a highly 
nonlinear process system. A fuzzy decision making 
agent is superimposed on MPC, and results are 
compared to those obtained from conventional MPC 
[21]. Comparing MPC to conventional PID 
controllers, it should be noted that MPC is a 
relatively more complex regulator, especially in the 
present of constraints. Moreover, it takes more time 
for on-line calculations when the constraints 
intervene. Parameters of MPC are designed based 
on successive iterations, where no mathematical 
forms have been developed yet to determine the best 
configuration of the parameters. A large volume of 
literature considers performance comparison 
between MPC and conventional PID control, where 
the results usually point out to noticeable MPC 
superiority [22, 23].  

This paper presents a design methodology of a 
MPC scheme for vector-controlled induction motor 
drives. The design objective is to maintain deadbeat 
performance for both inner current loop and outer 
control loop. The design process and system 
modelling are carried out in Matlab/Simulink 
environment. The performance of the proposed 
controller is compared to that of an adaptive PI 
controller designed previously in [24] using particle 
swarm optimization (PSO) and adaptive neuro-
fuzzy inference systems (ANFIS). Both qualitative 
comparison (via time domain step response) and 
qualitative comparison (via certain performance 
indices) are used to evaluate the behaviours of both 
controllers. Results show distinct superiority in 
favour of the proposed MPC. 

2 Problem Formulation 
The deadbeat response is characterized in 

control systems by zero steady-state error, fast 
transient response, and maximum overshoot within 
±2%. Deadbeat response is greatly desirable in high 
performance applications of induction motor drives. 
Nevertheless, maintaining the deadbeat response 
constantly is a challenging task due to the variation 
in loading conditions. One more difficulty arises 
from the change in system parameters that is 
associated with load variation. Since MPC can 
optimize the control scheme over timeslots, this 
feature could be employed to maintain certain 
targeted performance of the controlled system. 

The present work aims at developing MPC-
based controllers for a vector-controlled induction 
motor drive to maintain deadbeat performance for 
both inner and outer loops. The stator and rotor 
resistances denote the most significant varying 
parameters of the current loop [25]. The resistance 
value changes with loading as a result of the 
associated change in current magnitude. On the 
other hand, the shaft moment of inertia and 
coefficient of viscous friction designate the main 
noteworthy parameters, which vary with mechanical 
loading in the speed loop [26]. The operating region 
of the current loop covers stator and rotor 
resistances varying between 50% and 150% of the 
nominal value [27]. Similarly, the moment of inertia 
of the motor shaft changes between 100% and 300% 
of the rated value, while the coefficient of friction is 
considered to vary from 50% to 200% of the normal 
value [27]. 

The design of the MPC controllers is based on 
maintaining deadbeat characteristics for the time-
domain step response of current and speed loops 
through forming and solving an on-line optimization 
problem at each control cycle. The procedure that is 
followed to guarantee such deadbeat characteristics 
is described in details in Section 4. The proposed 
MPC scheme is compared to an adaptive controller 
based on PSO and ANFIS techniques [24]. 
 
3 Induction Motor Dynamic Model 

The dynamic model of an induction motor can be 
represented by a set of highly nonlinear differential 
equations. In order to develop the model, linear 
magnetic circuit and identical mutual inductances 
are assumed, and iron losses are neglected [28]. The 
equivalent circuits of a three-phase symmetrical 
induction motor in d-q reference frame are shown in 
Fig. 1. The nonlinear dynamic model in 
synchronous reference frame is given in [29-32] as 
follows: 
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Where: 
vds and vqs: Stator voltages in d-q reference frame. 
ids and iqs : Stator currents in d-q reference frame. 
λdr and λqr: Rotor flux linkages in d-q ref. frame. 
Te  :  Electromagnetic torque. 
TL :  Load or disturbance torque. 
P  : Number of poles. 

sω : Stator angular frequency (rad/sec). 

rω : Rotor electrical speed (rad/sec). 
slω : Slip angular frequency. 

Rr and Rs: Rotor and stator resistance referred to 
the stator. 

Lr and Ls: Rotor and stator inductance referred to 
the stator. 

Lm: Mutual inductance referred to the 
stator.  

J: Moment of inertia. 
B: Coefficient of frictions. 

In vector control, the rotor flux in the q-axis is set 
equal to zero (λqr= 0 and pλqr= 0). Therefore, 
Equations (1) through (4) of the mathematical 
model become, 
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If the d-axis rotor flux, λdr, is kept constant, the 
generated torque will be linearly proportional to iqs. 
Therefore, the rate of change of d-axis rotor flux, 
pλdr, becomes zero; Equations (10) and (11) yield,  

ds

qs
sl i

i
ηω = (12) 

 

 

   
Fig.1 The equivalent circuit of IM in d-q reference 

frame 
 
4 Model Predictive Control 

Model Predictive Control (MPC) is an 
advanced control technique that has been proved to 
efficiently control a wide range of applications in 
industry including unstable systems, multi-input 
multi-output (MIMO) systems, systems with delay, 
constrained and hybrid systems [2]. 
Unlike most control algorithms, MPC has the ability 
to predict the future response of the plant. At each 
control interval, MPC attempts to predict future 
plant behaviour through an on-line optimization 
process, which maximizes the tracking performance 
while satisfying constraints [3]. Fig. 2 shows a 
simple block diagram describing the MPC. 
 

 
Fig. 2 A simple block diagram describing MPC 
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MPC is characterized by the following strategy 
which is represented in Fig. 3: 

Step 1: An explicit model is used to predict the 
process output along a future time horizon. 
Predicted outputs Nkkty ...,,1),( =+) for the 
prediction horizon are calculated at each instant t 
depending on the past inputs and outputs as well as 
the future control signal 1...,,0),( −=+ Nkktu . 

Step 2: Sequence of future control signals is 
computed to optimize a performance criterion by 
minimizing a cost function. The cost function to be 
minimized is generally a weighted sum of square 
predicted errors and square future control values. 
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Where N1, N2 are the lower and upper prediction 
horizons over the output, Nu is the control horizon, 
β(j), λ(j) are weighting factors. The control horizon 
permits to decrease the number of calculated future 
control according to the relation: Δu(k + j) = 0 for j 
≥ Nu.w(k + j) represents the reference trajectory 
over the future horizon N. Constraints over the 
control signal, the outputs and the control signal 
changing can be added to the cost function: 
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Step 3: The current control signal )(tu is transferred 
to the plant. At the next instant, )1( +ty  is measured 
and step 1 is repeated according to the receding 
horizon strategy to calculate )1( +tu . Thus, at each 
instant, the horizon is moved towards the future 
keeping the same length.  
 
MPC can be tuned easily apart from the fact that it 
handles constraints properly. Constraints can be 
either on the output of the controlled processes 
(control variable) or on the control signals that are 
inputs to the process (manipulated variables). The 
constraints are in the form of saturation 
characteristics, e.g., valves with a finite range of 
adjustment, control surface with limited deflection 
angles, etc. Input constraints also appear in the form 
of rate constraints: valves and other actuators with 
limited slew rates. 
 

 
Fig.3 Strategy of Model Predictive Control 

 
5 Simulation Results 

The performance of the proposed MPC current 
and speed controllers is extensively studied through 
simulation under different operating conditions. The 
performance is always compared to that of the 
adaptive PI controllers presented in [24]. The range 
of system parameter change is assumed to be 50% 
to 150% of rated value for the stator and rotor 
resistances, Rs and Rr, which influence the 
performance of the inner current loop. The 
parameters which mostly impact the response of the 
outer speed loop – the moment of inertia, J, and 
friction coefficient, B – are assumed to vary from 
100% to 300% and 50% to 200% of rated values, 
respectively. Since the response of the inner current 
loop is inherently much faster than the dynamics of 
the outer speed loop, inner loop parameters are not 
likely to affect the outer loop performance. In other 
words, in the present cascade control system, the 
inner loop could be considered as a unity-gain block 
when analyzing the outer loop performance 
according to dynamic time scale separation. It 
should be mentioned that controller development is 
carried out using the Model Predictive Control 
Toolbox™ of MATLAB; MPC uses a fixed model 
structure, but allows the model parameters to evolve 
with time. 

 

Numerous simulation cases are carried out 
covering the whole range of parameters in order to 
study system performance under different loading 
conditions. Quantitative comparison between MPC 
and adaptive PI controllers are achieved by plotting 
the time-domain step responses on the same graph. 
A sample set of test cases are given in Figs. 4 
through 6. The step response of the inner current 
loop is shown in Fig. 4 at nominal Rs and three 
different values of Rr. Whereas, Fig. 5 shows the 
step response of the inner loop at nominal Rr and 
three different values of Rs. It is clear from Figs. 4 
and 5 that the performance of the proposed MPC 
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controller usually outperforms that of the adaptive 
PI controller. The only exception is the case when 
Rr is nominal and Rs equals 50% of its nominal 
value, Fig. 5(a). Another noteworthy observation in 
Figs. 4 and 5 is related to how the response changes 
as the system load increases. Comparing the step 
responses of Figs. 4(a), 4(b), and 4(c) under 
adaptive PI controller, it is noticed that the response 
becomes more sluggish as the value of Rr increases, 
i.e., as system load increases. However, in the same 
three plots, no much change is observed in response 
under the proposed MPC controller. The same 
observation is still true when comparing the 
responses of Fig. 5. Conclusively, when either Rs or 
Rr increases keeping the other resistor constant, the 
response becomes more sluggish under the adaptive 
PI controller only, but not the proposed MPC 
controller. To assure the robustness of MPC 
controller for the current loop, the design parameters 
are kept unchanged in all cases. The following 
design parameters are used: control interval = 
0.001s, prediction horizon = 10, control horizon =2, 
minimum constraints on manipulated variables = 0, 
maximum constraints on manipulated variables = 5, 
maximum down rate = –1000, maximum up rate = 
1000, minimum constraint on output variable = 0, 
maximum constraint on output variable = 1 and 
overall tuning factor = 0.8. 

 

Figure 6 shows the step-response of the outer 
speed loop at nominal B and different values of J. 
The plots indicate that the performance under the 
proposed MPC controller is evidently superior to 
that of the adaptive PI controller. Similarly, to 
assure the robustness of MPC controller for the 
speed loop, the design parameters are also kept 
unchanged in all cases. The design parameters of the 
speed controller are identical to those of current 
loop except for control interval and maximum 
constraints on manipulated variables, where their 
values are 0.01 s and 1, respectively. 

 

Simulation cases show that the coefficient of 
friction, B, has minor impact on system 
performance. At rated inertia, J, the change of B 
produces time-domain response curves of the speed 
loop which are almost identical. For the whole range 
of B variation, system response always has deadbeat 
behaviour.  These results agree with those obtained 
in reference [24]. 

 

Qualitative comparison of MPC and adaptive PI 
controllers is also carried out having regard to 
certain computable performance indices. The 
indices include the rise time, tr, settling time, ts, 
integral absolute error, IAE, and integral time-

weighted absolute error, ITAE. The integral errors, 
IAE and ITAE, are measures to assess how far the 
actual response is from a desired ideal response, 
where both depend on the time integration of an 
error function. Large errors contribute more to IAE, 
whereas ITAE penalizes more the error which 
occurs late in time. In other words, IAE and ITAE 
reflect the transient and steady-state characteristics 
of the system, respectively. Mathematical 
expressions to compute IAE and ITAE are given as 

∫=
∞

=0
)(

t
dtteIAE (15) 

∫ ×=
∞

=0
)(

t
dttetITAE ( 1 6 ) 

where, e(t) is the time-domain error function. The 
performance indices used for quantitative 
comparison between the MPC and adaptive PI 
controllers are given under different test conditions 
in Tables 1 through 3. The rise time is always better 
with MPC controller except for the first entry of 
Table 2, where Rr is 50%. The settling time shows 
that the MPC controller is always favourable, which 
denotes faster response than that of the adaptive PI 
controller. The integral absolute error, IAE, is 
always less for MPC controller than adaptive PI 
controller with one exception at Rr equals 50%, 
second entry of Table 2. However, with respect to 
ITAE, MPC controller is always better except for 
first two entries of Table 1, where Rs is 50% and 
100%. Therefore, both qualitative and quantitative 
comparisons show that the performance of the MPC 
controller is superior to that of the adaptive PI 
controller. 

As pointed out earlier, the coefficient of friction, 
B, has negligible effect on performance indices of 
the outer loop. System performance measures 
shown in Table 3 correspond to the given values of 
J and any value of B within the considered range 
from 50% to 200% of rated value. 
 
4 Conclusion 
The paper presents a design methodology for 
current and speed controllers of vector-controlled 
induction motor drives based on MPC. The 
controllers maintain deadbeat response of both inner 
and outer loops of the cascaded control system. The 
time-domain response is compared with that of an 
adaptive PI controller designed based on PSO and 
ANFIS techniques. Certain performance indices are 
also selected to compare the characteristics of the 
two controllers. Both qualitative and quantitative 
comparisons show the superiority of MPC as in 
contrast with the adaptive PI scheme. 
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(a) Rr = 50% 

 
(b) Rr = 100% 

 
(c) Rr = 150% 

Fig. 4 Step response of quadrature current at 
nominal Rs with different Rr conditions 

Table 1: A comparison between results obtained by 
both MPC and Adaptive PI controllers under 

different Rr conditions 
 

Rr Controller tr(ms) ts(ms) IAE ITAE 

50% 
Adaptive PI 1.50 2.83 0.91×10-3 7.36×10-7 

MPC 0.86 1.37 0.69×10-3 2.91×10-7

100% 
Adaptive PI 1.90 3.61 1.11×10-3 1.03×10-6 

MPC 0.86 1.36 0.68×10-3 2.84×10-7

150% 
Adaptive PI 2.50 5.63 1.36×10-3 1.84×10-6

MPC 0.85 1.34 0.66×10-3 2.70×10-7

 
(a) Rs = 50% 

 
(b) Rr = 100% 

 
c) Rr = 150% 

Fig. 5 Step response of quadrature current at 
nominal Rr with different Rs conditions 

Table 2: A comparison between results obtained by 
both MPC and Adaptive PI controllers under 

different Rs conditions 

Rs Controller tr(ms) ts(ms) IAE ITAE 

50% 
Adaptive PI 0.85 1.45 0.61×10-3 3.64×10-7 

MPC 0.86 1.33 0.66×10-3 2.74×10-7 

100% 
Adaptive PI 1.10 3.89 0.75×10-3 6.83×10-7 

MPC 0.84 1.28 0.63×10-3 2.50×10-7 

150% 
Adaptive PI 1.50 4.12 0.86×10-3 8.41×10-7 

MPC 0.82 1.22 0.59×10-3 2.26×10-7 
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(a) J = 100% 

 
(b) J = 200% 

 
(c) J = 300% 

Fig. 6 Step response of motor speed at nominal B 
with different J conditions 

Table 3: A comparison between results obtained by 
both MPC and PI-PSO controllers under different J 

and (B = 50.. 200%) 

J Controller tr(ms) ts(ms) IAE ITAE 

100% 
Adaptive PI 50.0 90.0 0.023 0.0006 

MPC 14.6 25.8 0.005 1.69×10-5 

200% 
Adaptive PI 83.7 150.0 0.038 0.0015 

MPC 18.0 30.0 0.007 3.99×10-5 

300% 
Adaptive PI 88.6 161.0 0.041 0.0017 

MPC 19.5 32.8 0.010 6.66×10-5 
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Appendix A 
Ratings and parameters of the induction motor 
 

 
 
 
 
                            
 

Output Power, Po 4.6 kW  
Voltage, VLL 400V  
Current, Is 8.2 A  
Frequency, f 50 Hz  
Shaft Speed, N 1440 RPM  
Number of Poles 4  
Power Factor 0.85  
Stator Resistance, Rs 0.624 Ω 
Rotor Resistance, Rr 0.538 Ω 
Rotor Inductance, Lr 0.138 H 
Mag. Inductance, Lm 0.147 H 
Stator Inductance, Ls 0.133 H 
Moment of Inertia, J 0.0196 kg.m2 
Coeff. of friction, B 0.0087 N.m.sec/rad 
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